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Electronic thermal conduction in a magnetoplasma with electron number densities of the order of 1011 

to 1012 cm-3, where Coulomb interactions predominate, has been studied experimentally in neon discharges 
at a pressure of the order of 5 mm Hg, and magnetic fields up to 1200 Oe. The temperature distribution re­
sulting from a very localized heating of the electron gas by an electromagnetic wave of frequency 7500 
Mc/sec has been measured in a plane perpendicular to the magnetic field and at variable distances from 
the heated volume. The experimental results are compared with the predictions of Landshoff. 

I. INTRODUCTION 

THE theory of thermomagnetic effects including 
electron-electron interactions in a fully ionized 

gas has been in the literature for more than ten years.1 

Heretofore no experiment has been conducted to 
measure the electronic thermal transport coefficients of 
a magnetoplasma. The present paper reports results of 
experimental measurements of heat flow in the electron 
gas in an effectively fully ionized plasma placed in a 
magnetic field. The experimental measurements are 
compared with Landshoff's calculations.1 This work is 
an extension of the earlier efforts to measure the 
electronic thermal conductivity of a plasma in the 
absence of an external magnetic field.2,3 

I t is interesting to note that an effectively fully 
ionized plasma can be simulated by a gaseous discharge 
in which the Coulomb interaction plays the dominant 
role. The most important criteria that an experimental 
measurement of electronic heat flow in an ionized 
medium be feasible, and that the results correspond to 
the fully ionized case are the following: 

(1) The thermal relaxation length2 in the electron gas 
should be long enough for accurate measurements of 
electronic temperature distribution to be made. 

(2) The electron-ion interaction must dominate the 
electron-neutral interaction so that the plasma studied 
may simulate the fully ionized gas. 

* Research supported by Air Force Cambridge Research 
Laboratory, under contract AF 19(604)-7473. 

1 R. Landshoff, Phys. Rev. 76, 904 (1949). 
2 L. Goldstein and T. Sekiguchi, Phys. Rev. 109, 625 (1958). 
3 T . Sekiguchi and R. C. Herndon, Phys. Rev. 112, 1 (1958). 

Thermal relaxation distance mentioned above in (1) 
arises from the heat equation, 

Kd2d/dx2=%nkd/Teiy 

in one dimension, where K is the electron thermal 
conductivity, n is the electron number density, Tei is 
the electron-ion energy relaxation time,4,5 and 6 is the 
amount by which the electron temperature exceeds the 
ion temperature. Such an equation leads to a charac­
teristic thermal relaxation length, 

p = (2K/3nkGvei)ll\ 

where rei is replaced by ( l /G^O with G=2m/M being 
twice the electron-to-ion mass ratio and vei is the 
electron-ion collision frequency. Inserting the theo­
retical value of K,1 we get 

S/3\^ 5 -'£ JUS 
n hLl(kT/#)*/n]y/G\ e2 J ' 

where the factor 5 is of the order of unity. Thus, for 
electron temperature r « 3 0 0 ° K , and electron number 
density n^lO11 cm~3, we have p«4 .5X10- 2 / \ /G cm. A 
small value of G is favorable in this regard and this 
prompts us to use as heavy a gas molecule as possible. 

The condition (2) mentioned above demands that 
the ratio of the electron-molecule to electron-ion 
collision frequency vem/vei be as small as possible and 
that the electron number density be large. The actual 
choice of gas to be used was dictated by a number of 

4 L. Landau, Physik Z. Sowjetunion 10, 154 (1936). 
6 A. Dougal and L. Goldstein, Phys. Rev. 109, 615 (1958). 
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considerations. In order to relate the present work to 
earlier work and, in particular, to make use of the 
recombination light from noble gas afterglow, we 
restricted our choice to noble gases. Helium is ruled 
out because it is too light. 

The choice of the remaining noble gases, then, 
depends on the relative values of electron-molecule 
collision probability.6 Since the electron-molecule col­
lision cross sections of Kr and Xe are relatively large, 
a large value of vQi/vQXa requires a very high electron 
number density as well as a low electron temperature. 
Hence the choice is restricted to neon and argon. Neon 
was chosen because of the fact that earlier experiments 
were done in neon.2-5 The ratio yemAei~0.07 for electron 
densities w~ 1011 cm - 3 in neon at a pressure of 5 mm Hg 
and electrons at a temperature of 300°K. Thus, under 
these conditions the plasma simulates an almost fully 
ionized gas. I t should be noted that for electron tempera­
tures of the order of 1000°K, the plasma would no longer 
have the properties of a fully ionized gas since vem ~ vei. 
The analogy to a fully ionized gas fails in two respects 
due to the presence of neutral molecules. In the first, 
the ions are immersed in an effective heat bath of neutral 
molecules which fixes the ion temperature. This prevents 
the ions from contributing to the heat conduction 
process due to local heating by the electrons. In the 
second, the neutral molecules make possible the con­
tinuous conversion of atomic ions to molecular ions. 

placed in a transverse magnetic field as shown in Fig. 
1(b). Electrons in a localized volume of the plasma are 
uniformly heated by an electromagnetic wave of fre­
quency 7500 Mc/sec. Conduction of the heat by the 
electron gas alone takes place, and the resulting thermal 
distribution of the electrons is measured by the " after­
glow quenching" technique.7 The frequency of the 
electromagnetic wave is so high that the temperature 
of the ions is unaffected. 

The assumption of negligible charge concentration 
gradients across the plasma (y direction) may be 
justified by the magnetic field which inhibits diffusion 
to the sides of the plasma. Such arguments cannot be 
invoked for the flow parallel to the field. Here an 
estimate of the heat loss due to ambipolar diffusion 
has been shown to be small compared to those due to 
the temperature gradients. 

In order to effectively compare the predictions of 
theory with experiment it is necessary to derive the 
usual heat equation for the electron gas based on con­
servation of energy and charge. We cannot derive the 
heat equation, however, until we make an assumption 
about either the local fields or the local currents. Due 
to the impressive success in the past of the ambipolar 
flow concept, we assume that it is effective in the 
present experiment. Further refinements of the experi­
ment or of the theory may make this assumption 
untenable. 

II. THEORY OF EXPERIMENT 

II. 1 Introduction 

The experiment to be analyzed is one in which an 
idealized rectangular slab of plasma infinitely long is 

II.2 Relation of Thermomagnetic Coefficients 
to Landshoffs Calculation 

Callen8 has provided a convenient tabulation of 
thermomagnetic effects of a conducting medium in the 
following matrix form: 

Vs/el 
V„MA 

G. 
Qy J 

r < r r ' 
-HRi 

aT 
L THru 

HRi 
*Cl 

-THVi 

aT 

a 
HVi 
— Kt 

HKiS 

-HVil 
a 

-HKiS 
— Ki _ 

X 

r -7'11 
jy 

v,r 1 
Lv„rJ 

(1) 

for the transverse components in the x-y plane. In the 
z direction, that of the magnetic field H, the appropriate 
equations may be written 

- V2/z/e= (i2/o-0)+aoVT
2r, 

Qz=a0Tjz—KQVZT, 

the subscript zero referring to zero magnetic field. The 
coefficients <rt-, R^ *t-, and t\i are the isothermal con­
ductivity, Hall coefficient, thermal conductivity, and 
Nernst coefficient, respectively; a and S are the thermo­
electric power and Leduc-Righi coefficient; JX is the 
electrochemical potential and is equal to the sum 
Ze<p-\~n of the electrical potential Ze<p and chemical 
potential ju, where Z is the sign of the charge; Q is the 
heat flux and is to be thought of as the product of the 

6 A. V. Phelps, O. T. Fundingsland, and S. C. Brown, Phys. 
Rev. 84, 559 (1951). 

absolute temperature and the entropy current; j is the 
electric current density. 

We find it convenient to rewrite the equations in 
complex form, 

(vx-wvy)/z± 

Z±e 
-=(—+iHRA(jx±+ijy 

V*M± h 

+ (a±+»ffij,-±)(V,+*V,)r±, (2) 

-ao±V2r±, 
Z±e ff^ 

Qx
±+iQ,y±=THa±+WVi±)(jx±+ijy±) 

-Ki±(l+inS±)(V,+iVv)T±, (3) 

e2±=r±a0
±y,±-Ko±v,r±, 

7 L. Goldstein, J. M. Anderson, and G. L. Clark, Phys. Rev. 
90, 486 (1953). 

8H. B. Callen, Phys. Rev. 85, 16 (1952). 
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HEATED REGION 

HEATED REGION 

B̂  
(a) 

FIG. 1. The plasma column geometries, (a) Cylindrical geometry; (b) rectangular geometry. 

where the superscripts + and — refer to the ion and assumption. We assume that jx
++ijy

+= — jx~—ijy~ 
electron species, respectively. = —Jx~—iJy~, and j z

+ = —jz~= —Jz~, where J~ is the 
We shall next make use of the ambipolar flow electron ambipolar current. Then, 

Jx~+iJy~=-

and 

(a++iff*+) ( V , + i V y ) 7 ^ - ( a - + ^ - ) ( V g + i V y ) 2 - - + ( V x + i V y ) ( M + + i u - ) A 

(l/<ri+) + (l/<rC)-iH(Ri++iRr) 

ao+V2T+-ao-VzT-+Vz(^+fjL-)/e 

(4) 

/.-= 
(iAo+)+(iAo-) 

The energy conservation equation for the electrons are able to replace %kT~(dn~/dt) in (5) by 
is ordinarily derived from the Boltzmann equation.9 3 
In the absence of center-of-mass motion, the energy 
equation may be written 

di^n-kT-) _ . . „ . / \ Jdf\ 

2kT-(dn-/dt)=-V- (lkT-/e)]+yV(§kT-/e) 

+§kT-{dn-/dt)r. (7) 

dt 
-=-V-q-+j--E+ / %tnv2l 

dt / co\\ 
(5) 

The heat equation (5) can then be reformulated 
making use of (6) and (7) to give 

where ^kT~~=(^mv2)aVj q=(imraJ2v)av, and E is the 
electric field. Included in the last term, the collisional 
term, is the possible heating due to collisions with 
metastables, cooling due to collisions with other species, 
and cooling due to removal of electrons by recombi­
nation. The effect of collisions may be written in the 
form, 

J \dt/coi\ L 

ink(r--T+y 

+%kTrl~ 
fdn~ 

dt ) : 
(6) 

%trk{dT-/dt)= -V-[q-+f (kT-/e)rl 
+r-v|(*r-/«)+r-E 
+^rrk(T--T+)(l-an-rei)/Tei 

+§a(n-yk(T+~Tr), (8) 

where the second term on the right-hand side is the 
Thomson heating term and a is the electron-ion recom­
bination coefficient. The last term in (8) is small and 
can be neglected. In our experiments, awrei<0.5. 

To complete the analysis, the connection between the 
previously defined heat fluxes q~ and Q~ is needed. 
Reference to a work on irreversible thermodynamics10 

provides the relation 

where the first term in (6) refers to electron-ion col­
lisional cooling and the last term in (6) represents 
cooling due to recombination. The energy %kTT is that 
characteristic of a recombining electron, and is some­
what lower than the ambient electron energy \kT~~. 
From the electronic charge-conservation equation we 

q~=Q~-M~i7e. (9) 

Assuming that ix~ = kT\n[_nhz/'(27rra&r-)3/2] and as­
suming that Vn+=Vn~= VT+=0, a rather straight-
forward analysis using Eqs. (3), (4), and (9) gives the 
result 

0»+f O y = q.~+iqy-+i (kT/e) (Jx-+Uy~) 

T~l(a-+iHV-) + (^fjr/kT-)k/e32 

= -\KC(l+iHS-y 

and 

Oz=qs+UkT-/e)Jz-= 

(l/<ri+) + (l/<rr)-in(Ri++Rr) 

*o 
(iAo+)+(iAo-) 

(v.+fvjr-, 

VZT~. 

(10) 

9 S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases (Cambridge University Press, New York, 1939), 
p. 135. 

10 S. R. De Groot, Thermodynamics of Irreversible Processes (North-Holland Publishing Company, Amsterdam, 1951). 
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TAPERED WAVEGUIDE 

5.6mm i.d. GLASS 
DISCHARGE TUBE 

7 5 0 0 MC HEATING WAVE 
or 8 3 0 0 MC SENSING WAVE IP2I PHOTOMULTIPLIER 

FIG. 2. Schematic diagrams showing tapered waveguide 
and light collecting method. 

We note that (10) can be written in the form of a heat 
flux £ l = — K- VT> where K is the thermal conductivity 
tensor. 

Landshoff has calculated the transport coefficients 
denned in Eq. (1) for a fully ionized gas in which 
electron-electron interactions are also taken into 
account. If we denote by <r, r, #, and K the quantities 
denoted by cr, r, M, and K by Landshoff, his Eqs. (31) 
and (32) may be rewritten in the form 

(vx+ivy)r/e=L(j*-+ijy-)/z~] 
~{L(i-^/kT-)k/e-]+f/a}(Vx+iVy)r-, (11) 

and 
'• —L(p/&)—H~~/e2U*~+iJv~) 

~-(K-pr/a)(Vx+Ny)T- (12) 

Comparison of (11) with (2) and of (12) with (3) 
shows that 

(jl/ a T~)—yr/eT~ = —or— Ulrf, 

and the constitutive Onsager relation is 

P/a=(SkT-/e) + rT-/a 

between the Landshoff coefficients. 
In terms of the Landshoff coefficients, the effective 

complex thermal conductivity K—KzxilKxy a S deter­
mined from Eq. (10) becomes 

K = Kxx-\-iKxy=K— (yilr/of) 

T~l{f/s)+k/eJ 

[ ( ! / * ) + ( ! / < * + ) - 1 ^ + ] 
(13) 

Numerical estimates made in connection with our 
experiment indicate that the third, or ambipolar term, 
in Eq. (13) can be ignored. Therefore the appropriate 
thermal conductivity is the isothermal conductivity, 

where 

K=K-jii/<7=( )A, 

:(T)(T)-(T)"]/(T> 

in LandshofFs notation. Additionally, the Joule and 
Thomson heating terms in (8) have been estimated 
and found to be negligible due to the weak ambipolar 
electron current J~\ Consequently, we may write for 
the heat equation (8) the simplified equation 

(ln~k)-
dd 

dt 

&2B d'26\ (3KXX 

+ - + . 
d.v-2 d W \dT~ 

TO: 
(14) 

where Kxx=Rt(K—Jir/a) and d=T~—T+. Terms in z 
have been neglected, since we heat the plasma uni­
formly in the z direction initially. Since the ambi­
polar effect is so small, the boundary is effectively 
insulating. 

III. EXPERIMENTAL SETUP AND MEASUREMENTS 

The relevant parameters connected with the meas­
urement of the electronic heat conductivity are the 
electron number density n, the electron collision fre­
quency vy or the effective relaxation time r, where 
r = Tei/(l—awrei), and the temperature distribution in 
the electron gas. 

The plasma under study is produced in a long thin 
glass discharge tube by a 3-kV dc pulse, 2 /zsec long. 
Two discharge tube geometries are used, as shown in 
Fig. 1. In the circular cylindrical discharge tube 
(0.56-cm i.d. and 51 cm long) a stable and fairly uniform 
discharge was obtained by using a hot cathode and 
feeding the discharge pulse through an auto transformer. 
In the case of the rectangular discharge tube (0.75 cm 
Xl.75 cm, and 30 cm long) a fairly uniform discharge 
was obtained when the cathode was cold and grounded. 
In the cylindrical discharge tube the afterglow plasma 
lasted for ^500 /xsec whereas it was somewhat longer 
in the rectangular discharge tube. All measurements 
are made between 100 and 350 jusec in the neon (at 5 
mm Hg) plasma afterglow after the initiation of the 
discharge pulse. 

The present experimental setup is similar to earlier 
work.2,3 In the case of the cylindrical discharge tube 
the plasma forms a post across the waveguide as shown 
in Fig. 2. As before parameters n and v are determined 
by measuring the normalized microwave impedance of 
the plasma considered as a dielectric post,11,2 traversing 
a WR137 waveguide. A probing 8300-Mc/sec frequency 
wave is used to measure n and v. Proper account for 
the presence of magnetic field can easily be made as 
long as the electron cyclotron frequency is small com­
pared to the microwave signal frequency. The above 
condition is not satisfied for the largest magnetic fields 
(1200 Oe) used in the experiment, since the cyclotron 

11 Wave Guide Handbook, Massachusetts Institute of Technology 
Radiation Laboratory Series No. 10 (McGraw-Hill Book Com­
pany, Inc., New York, 1957), p. 266. 
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frequency /// = 3.4X109 cps, and the signal frequency, 
/ = 8 . 3 X 1 0 9 cps. 'In this case errors of 30% in v and 
15% in n are expected. 

Electron number densities ranging from 1011 to 
5Xl012/cm3 are readily measured. The electron col­
lision frequency is determined in the range of 3X109 

to 2X1010/sec in the present experiment. Due to un­
certainty in the exact diameter of a "uniform" plasma 
post the absolute value of the number density is rather 
difficult to determine. However, a reasonable estimate 
of relative variations of electron number density is 
obtained. The determination of electron collision 
frequency is insensitive to the assumed diameter of the 
plasma post. This has been checked against the meas­
ured energy relaxation time r as determined by light 
intensity measurements. The two measurements agree 
within 20% of each other if it is assumed that the neon 
ions are mostly of the molecular type. 

In the case of the rectangular discharge tube the 
microwave measurements of n and v were not attempted 
because of the difficulties involved although it is by no 
means impossible. As discussed later, relative estimates 
of thermal conductivity can be made without making 
use of the explicit values of these parameters. 

The waveguides (WR137) through which the dis­
charge tubes pass are tapered in the middle as shown in 
Fig. 2. At appropriate times in the afterglow, a high-
power (~100mW) microwave signal (7500 Mc/sec) is 
propagated along the waveguide in pulses of 10-30 
/xsec duration. This microwave signal selectively heats 
the electrons in a small, well-defined region of the long 
plasma column. 

The phenomenon of "afterglow quenching"7'2 is 
exploited for the measurement of the temperature 
distribution in the plasma column. The "steady-state" 
method2 is used to measure the heat flow in the electron 
gas. From experimental evidence in this laboratory it 
is reasonable to assume that the electron temperature 
T~ will have decayed almost to the ion temperature T+ 

at the time of measurement. 
The afterglow light is monitored by an arrangement 

consisting of a suitable light pipe, a 1P21 photomulti-

| OCCURRENCE OF 
1 THE DISCHARGE 

FIG. 3. The phenomenon of afterglow quenching; curve A shows 
the decay of the afterglow light and curve B shows the quenching 
of the light signal due to the local electron temperature rise. The 
relative temperature rise {T~-T+)/T+ is given by (IQ/I)2l3-1. 

d=22.7 mm 

FIG. 4. Photographs of oscilloscope traces showing a typical 
sequence of quenched light signals at various distances d from the 
heated region for a cylindrical plasma. The discharge parameters 
are: Neon gas at 7 mm Hg, 200 /*sec in the afterglow, H=66Q Oe, 
« = 5.5X10u/an3. The time scale is 5 psec/cm. 

plier tube and a dial indicator. The light pipe is made 
of 3-mm diameter Pyrex rod or by a number of 0.5-mm 
diameter quartz fibers assembled in a bundle. This 
arrangement limited the area of observation to 3 mm2. 
The phenomenon of heat flow in the plasma column is 
studied by plotting the temperature profile with the 
help of the movable phototube assembly. Figure 3 
shows typical afterglow light quenching phenomena, 
reflecting the electron temperature change due to the 
local heating. A set of such pictures as shown in Fig. 4 
allows the evaluation of the space distribution of the 
electron temperature. 
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FIG. 5. The experimental tempera­
ture distribution in the rectangular 
plasma column, (a) Relative tempera­
ture variations as a function of y for 
various values of x; (b) relative tem­
perature variation as a function of x 
for various values of y. (6=T~—T+.) 
Neon gas at 2.5 mm Hg, 90 /*sec in the 
afterglow, # = 600 Oe. 

(a) 

When the magnetic field is perpendicular to the 
temperature gradient in the plasma, a nonuniform 
temperature distribution in the plane transverse to 
the magnetic field results. In the case of circular dis­
charge tube, it is impossible to measure temperature 
distributions in the y direction (see Fig. 1). A rec­
tangular discharge tube with the broader side trans­
verse to the magnetic field and the heat flow is suitable 
for measurements of transverse temperature distri­
butions in both the x and y directions. 

The energy relaxation time r is measured from the 
trailing edge of the decay of the quenched light signal. 
The electron temperature T~ decays to that of the ions 
r + , once the heating is stopped. The time constant of 
this decay is the energy relaxation time. From Eq. (8), 

dT-/et= - (r--z+)(i-a»rei)/Tei= - (r--r+)/V? 

where it has been assumed that the elastic electron-ion 
collisions and recombination are mainly responsible for 
the electron energy relaxation. 

(b) 

The corresponding longitudinal distribution is given in 
Fig. 5 (b) with y as the parameter. I t is clear that the 
heat is concentrated toward large values of y. This is 
consistent with the electrodynamic force on the 
electron gas in which heat is carried. 

I t has been found that in the steady state, the 
temperature distribution is essentially exponential in 
both the transverse and longitudinal directions, as 
shown in Figs. 6(a) and 6(b). Thus, the temperature 
distribution shows similar characteristics to that already 
discussed in zero magnetic field.2 

We propose testing the experimental data in the 
following way. The thermal conductivity can be 
written as 

*xx= (2Snk2T~/^mp)A (COH/J/), 

where v is a parameter defined by Landshorl1 and is 
equal to the electron-ion collision frequency calculated 
from Landau4 when Landau's cutoff procedure is 
followed. We note that the heat equation, Eq. (14), 
can be written as 

IV. EXPERIMENTAL RESULTS AND COMPARISON 
WITH THEORY 

In this section we present the experimental results 
and compare them with theory. After presenting the 
data, we compare it with the theory by two methods; 
the first consists of a check of consistency with the heat 
equation and the second a comparison of our thermal 
conductivity estimates with those of Landshoff.1 

As mentioned earlier, it has been found possible to 
measure the transverse and longitudinal temperature 
profile in the rectangular tube. An example of the 
steady-state transverse temperature distribution for 
various values of x is shown in Fig. 5(a) for neon at a 
pressure of 2.5 mm Hg and a magnetic field of 600 Oe. 

/d26 
l( 
\dx2 

f&2e d2e\ r 
A\—+— )+• 

dA 1 
(SA/2) + (3UH/2V) 

d(uH/v)A 

X 
[-y<90\2 fd6\2-

dyJ 

= 6mi0(l-a»Tei)/25ft:T-Tei, (15) 

in which v was assumed to be proportional to T~zn. As 
can be seen in Figs. 6(a) and 6(b) the temperature 
distribution can be expressed as 

6 fay) oc e x p [ - (x/px)- (y/py)J 

We can perform two tests on this data; (a) test how 
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FIG. 6. Same data as 
in Fig. 5 showing the 
exponential character of 
the temperature distri­
bution. 

+ 

S 
C 

-1.0 

0 1 2 3 4 5 

DISTANCE FROM AXIS OF TUBE y(mm)-*-

-2 .0 

(a) 

12 14 16 

DISTANCE FROM HEATED REGION x(mm)-* 

(b) 

well it satisfies the heat equation, and (b) test the 
boundary condition, 0 ^ = 0 , at the wall. 

We may test the heat equation (15) by introducing 
the data for PX(O>H/V) and PV{UH/V) into (15) and, 
letting l /p 2 = ( 1 / P X 2 ) + ( 1 / P I / 2 ) , consider the equation, 

f r d \nA 
4 1 + 5 + 3 -i-

v)J2T-

( ) [ ( l / r )+cm]p 2 , (16) 
\25GkT-rJ 

where p=l/Grei has been assumed, and using the 
exponential space dependence of 0(#,y). The results of 
comparing both sides of Eq. (16) using the experi­
mentally determined values of px> py, and rei are shown 
in Table I. Figure 7 shows these quantities as a function 
of O>H/V. In Table I and Fig. 4, a was assumed to be 
2X10- 7 cm^sec-1 and n to be 1011 cm"3. From Eq. (10) 
and the definition of K, the transverse thermal current 
is given by 

Equation (14) then becomes (in the steady state) 

(d*e/dx*)+(d*d/df)=e/Pxx\ (18) 

where pxx
2=z2Kxxrei/3nk(l — anre\) is the characteristic 

length associated with the heat propagation. 
The boundary conditions are the following: 

(i) The temperature deviation 0 is zero for x= &. 
(ii) 0 is constant, in the heated region. 

(iii) The heat flow is zero at the boundaries. 

As seen above the experimental temperature dis­
tribution suggests a solution of the form, 

0(x,y) = 0o e x p [ - {x/px)-y/py~]. (19) 

It is seen immediately that such a solution will 
satisfy Eq. (18) if 

l/y=(l/p,*)+l/p„*=l//>, (20) 

0 ? y = — Kxy(d6/ dx) — Kxx(dd/ dy). (17) 

This solution does not give a constant temperature 

TABLE I. Comparison of the two sides of Eq. (16) as a function 
of 03H/V. The left-hand side, calculated from theory, is given in 
column 2. Column 3 is the right-hand side representing the data. 

Assuming the exponential variation of 0(#,y), we show 
in Table I I that O y « 0 , since px/py~—Kxy/Kzx. In 
addition, the calculated ratio of O ^ / O ^ is also given. 

In order to estimate the magnitude of the thermal 
conductivity tensor, we propose now to analyze the 
experiment from the point of view of a simplified heat 
equation, neglecting the temperature dependence of 
the thermal conductivity term. This approximation is 
valid for very small temperature deviations 0 / T ~ « l . 

COH/V 

0.0 
0.2 
0.5 
1.0 
2.0 
4.0 

i^'j£Bi7^] 
Assuming 0/T~ = 

r -=750°K; T+= 

1.27 
1.05 
0.49 
0.21 
0.092 
0.037 

= 0.6 
300°K 

^mvp^/lSrkT-
Assuming 

cm=2Xl04sec-1 

2.55 
1.89 
0.695 
0.205 
0.045 
0.016 

file:///25GkT-rJ
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TABLE II . Test of the assumption of zero transverse heat current density as predicted by Eq. (21). Column 4, the ratio of measured 
relaxation distances is to be compared with the theoretical ratio of thermal conductivities in column 7, obtained from columns 5 and 6. 
Column 8 gives an estimate of the relative magnitude of the transverse heat current density. 

oiH/v 

0.0 
0.2 
0.5 
1.0 
2.0 
4.0 

Px 

0.86 
0.86 
0.85 
0.83 
0.78 
0.65 

Py 

00 

0.84 
0.44 
0.24 
0.16 

Py/Px 

00 

0.99 
0.53 
0.31 
0.25 

4niPKxx/25nk2T-

0.5077 
0.4440 
0.2751 
0.1356 
0.06198 
0.02792 

4:tnvKxy/25nk2T-

0 
-0.1598 
-0.2356 
-0.1977 
-0.1279 
-0.07951 

Kxz/Kxy 

00 

2.8 
1.17 
0.69 
0.48 
0.35 

0 * / 0 * 

0.07 
0.04 
0.11 
0.06 

distribution in the heated region as required by con­
dition (ii). In this region and close to it the complete 
solution evidently includes other terms which decay 
rapidly with x leaving only the term in Eq. (19) in the 
region of observation. Equation (19) satisfies the con­
dition (i). For condition (iii) we have from Eq. (17) at 
the walls, 

( O y ) w a l l = [ (^x/ / /Px) + ^xx/Py]^wall — 0-

Therefore, 
Px/P I Py— KXy/K (21) 

From (20) and (21) we now have means of approxi­
mating Kxy and KXX from px, py, rei, and n, namely, 

Kxx=3nkp2(l—cmrei)/2rei, 

Kxy= —3nkp2(l—anTei)px/2T(.ipy. 
(22) 

FIG. 7. Comparison of theory with experiment as a function of 
OJH/V by means of the heat equation as given by Eq. (16). The 
left-hand side is plotted as curve A and represents the theory. 
Curve B represents the experimental data substituted into the 
right-hand side of the equation. In curve A, d/T~ is assumed to 
be 0.6, and an to be 2X104 sec-1. 

It is expected that in the circular tube geometry a 
similar distribution is set up, at least in the x direction. 
Therefore the temperature averaged over the circular 
cross section would have the form 

(0(#))av=(0o)av exp( — x/px). 

As shown in Appendix I the heat equation in one 
dimension leads to 

px
2=2TeiKxx/3flk(l— a«Tei), (23) 

where rei, KXX, and n are averaged over the cross section 
of the discharge tube. 

V. DISCUSSION OF RESULTS 

A. Circular Tube 

py could not be measured in this geometry because 
the transverse dimensions were too small and because 
of its circular cross section. However, n and v were 
measured by microwave technique and rei was measured 
using afterglow quenching. 

From the formulation of the theory1 the theoretical 
parameter of interest is the ratio of the cyclotron 
frequency to the electron-ion collision frequency (G)H/V)-
It was found impractical to vary the magnetic field in 
order to study the variation of the thermal conductivity 
with OOH/V. The magnetic field affects the initial dis­
charge making it difficult to compare data taken at two 
different magnetic fields. This is due in part to the 
plasma post diameter change with magnetic field which 
renders difficult any comparison of microwave meas­
urements. This is the reason why, in these measure­
ments, it was found much easier to vary the collision 
frequency v instead of the cyclotron frequency UH. 
This was done by keeping the magnetic field constant 
and making measurements at different times in the 
afterglow. The collision frequency then varies through 
its dependence on the number density and temperature 
of the electrons. However, only relative measurements 
can be made in this fashion. The heat conductivities 
measured at various times in the afterglow were always 
compared to the one measured at the earliest time in 
the afterglow (where WH/V is the smallest). 

If measurements of the quantities in Eq. (23) are 
made at the different times h and /2 in the afterglow, 
then the ratio of the thermal conductivities may be 
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TABLE III . Determination of the relative thermal conductivity in the cylindrical discharge tube #=1125 Oes, 
neon, 7.7 mm Hg. 

Time in 
afterglow 
t Ousec) 

100 
125 
150 
175 
200 
225 
250 
300 

Electron 
number 
density 

n (1012 cm"3) 

1.615 
1.185 
0.904 
0.680 
0.511 
0.389 
0.311 
0.209 

Electron 
collision 

frequency 
v (1010 sec"1) 

1.41 
1.205 
1.042 
0.935 
0.861 
0.788 
0.679 
0.297 

Relaxation 
distance 
Px (cm) 

0.63 

0.75 

0.94 

0.95 
1.14 

Measured 
relaxation 

time T 
G*sec) 

2.05 

3.15 

7.1 

9.5 
11.3 

C0ll/v 

1.56 

1.93 

2.56 

3.24 
4.25 

viw/v& 

1 

1.235 

1.639 

2.08 
2.74 

I" ,4 (1.56)1 
LA(C0H/P)jexp 

1 

1.05 

1.65 

2.33 
2.31 

fAjl.W) 1 
L(o)H/v)A J theorv 

1 

1.26 

1.71 

2.230 
3.180 

"ioo corresponds to v at 100 /*sec in the afterglow. 

written 

= ( _ \ (24) 

In order to compare such experimental ratios with 
theory, we consider the ratio 

. (25) 
KX,(s*H(i)MD,Tr) _»irr i^(*>z/( i )A(i)) 

K**(CO/,(2)A(2),7Y-) »2r2-*ii4(«//(2)M2)) 

Equating (24) and (25), we obtain 

A{u>H{\)/v{\)) 

= (pxi/pX2)2(vi/v'2)blHn2/n1)
2IZ(r2/r1) (26) 

for the ratio of the &H/V dependent parts, using 
Tec (n/v)2f*. A typical set of parameters are shown in 
Table III. They are compared with theory in Fig. 8. 

B. Rectangular Tube 

In this geometry the electron number density and 
collision frequency were not measured by the microwave 
interaction method. The collision frequency vei was 
deduced from the energy relaxation time (rei) measured 
by the afterglow quenching method using vei=l/Grei 
with G=3.7X10~5 for the neon molecular ions.12 

Relative variations of the number density were 
deduced from relative values of the relaxation time, 
since it depends on number density and temperature as 

(T-) 3/2 

n]nZ(kT-/et)*/n] 
(27) 

As mentioned before, it was found desirable to keep 
H fixed while varying v in the circular tube experiments. 
Because n could not be measured in the rectangular 
tube, it was decided to do all experiments at the same 

time in the afterglow and vary H. In this way, effects 
due to a change in n would be minimized, although the 
discharge may have varied slightly due to the magnetic 
field. For each value of the magnetic field px, py, and 
rei were measured. I t was then assumed that the 
equilibrium temperature of the electrons was not 
affected by the magnetic field so that variations of rei 
which occur at a given time in the afterglow due to the 
magnetic field were entirely to be attributed to vari­
ations in number density of the electrons. 

Some difficulty was encountered in obtaining a 
reasonably uniform number density in the cross section 
of the tube. In the presence of the magnetic field the 
discharge current through the tube would take dis­
torted paths and be projected towards one wall by the 
JXB force. The nonuniformity thus created would 
decay by diffusion and at the time in the afterglow 
where the measurements were made, the uniformity 
was already much improved. I t was further con-

12 fei values were deduced from r = rei/(l— anrei) since a.hr&\ 
was small enough to be ignored. 

FIG. 8. The ratio A (1.56)/A (<OH/V) (neglecting the temperature 
dependence of KXX/KQ) for the cylindrical plasma as a function of 
o)H/v. The experimental points (o) refer to neon afterglow plasma 
at 7.7 mm of Hg with Z7= 1125 Oe. The solid line is the theoretical 
curve. 
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TABLE IV. Experimental values of KXX, neglecting its temperature variation. 

H 
(Oe) 

0 
160 
260 
360 
460 
560 
760 
860 
960 

1060 

Px 
(mm) 

8.5 
8.5 
8.65 
7.75 
6.7 
6.7 
7.5 
6.0 
7.2 
6.0 

Pv 
(mm) 

oo 
8.9 
5.7 
3.56 
2.46 
2.06 
1.78 
1.65 
1.65 
1.53 

r 

Gusec) 

i 5.2 
[6.4 

7.5 
8.3 

11.0 
11.6 
11.5 
11.0 
12.4 
12.0 

J>ei=l/Crrei 
(108 sec"1) 

8.4 
6.5 
5.7 
5.2 
4.1 
3.9 
4.0 
4.1 
3.7 
3.8 

WH/V 

0 
0.43 
0.81 
1.2 
2.0 
2.5 
3.4 
3.7 
4.6 
4.8 

Kxy/Kxx — Px/Py 

0 
0.96 
1.5 
2.18 
2.73 
3.27 
4.20 
3.64 
4.35 
3.92 

KxxAo 

1.00 
0.35 
0.15 
0.056 
0.0145 
0.010 
0.0085 
0.0080 
0.0064 
0.0057 

siderably improved by reducing the gas pressure to 
2.5 mm and thus enhancing the diffusion in the cross 
section. The electron number density was monitored in 
the cross section in the y direction by studying the 
variation of the afterglow light intensity (assumed 
proportional to n2). 

Very approximate relative values of KXX are obtained 
by reference to Eq. (24). Since it has been assumed that 
the ambient electron temperature does not depend on 
magnetic field, we may approximate the ratios of 
electron number density in Eq. (24) by the reciprocal 
ratios of relaxation time from Eq. (27), obtaining 

KXX(1)/KXX(2) = (piT2 /p2Tl)2 , 

from which the relative variations of KXX may be plotted. 
This has been done in Figs. 9 and 10 from data given in 
Table IV. In Figs. 9 and 10 the theory developed earlier 

in this paper is compared with the experimental 
points. 

VI. CONCLUSIONS 

The thermal distribution in a locally heated magneto-
plasma has been determined and the measurements 
have been compared with LandshofFs1 calculations for 
a fully ionized magnetoplasma. 

Two methods have been presented for interpreting 
the data. In the first we have attempted to fit the heat 
equation using the experimental temperature distri­
bution. There we found order of magnitude agreement 
with theory, with, however a progressive deviation 
toward lower O)H/P values. The second method was to 
ignore the temperature dependence of the thermal 
conductivity tensor which makes it possible to estimate 
an experimental value of the thermal conductivity 
tensor. One of the benefits of the latter analysis is to 

FIG. 9. Relative thermal conductivity KXX/KQ for the rectangular 
plasma geometry (neglecting the temperature dependence of 
KXX/KO) as a function of OH/V- The experimental curve (- O - O -) 
refers to a neon plasma at 2.5 mm of Hg, 200yusec in the afterglow. 

FIG. 10. Test of conditions of zero transverse heat flow Q v = 0. 
Solid line shows —Kxx/Kxy as a function OIOSH/V. The experimental 
points are the ratio Py/Px [cf. Eq. (21)] in neon at 2.5 mm Hg, 
200 jusec in the afterglow. 
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permit a comparison of experiments done both on 
cylindrical and rectangular discharge geometries. It was 
found that the thermal conductivity determined in the 
cylindrical tube displays a variation very similar to 
that found in the rectangular tube. This confirms the 
validity of the use of light measurements alone in the 
study of thermal transport processes. 
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APPENDIX I 

Derivation of the Heat Equation—Circular Tube 

Measurements made on the circular discharge tube 
are one dimensional so it is necessary to derive a one-
dimensional heat equation with which to interpret the 
data. 

This can be done by considering a short cylindrical 
section of the discharge tube and integrating the energy 
continuity equation over the volume. The resulting 
equation in the steady state is then, from Eq. (8) 

dxd2x+(ix— j £lxdZx=— / nkT-
(l—aHTei)' 

dV, 

if the surface heat currents are assumed to vanish, the 
Joule and Thomson heating is negligible, and Q x is 
given by Eq. (10). The integration over the ends is 
indicated by the subscripts on the surface element. In 
order to evaluate yXla^S* we make use of the fact that 
the temperature distribution B=T~—T+ is of the form 

exp[— (x/px) — y/py] even in circular geometry. Then 
it is readilv shown that, 

O x ^ C C (1 — PxPy(KXy)/(KXX))y 

where ( ) means averaged over the circular cross 
section. From measurements, pxpy~ 1/25 and (KX| /)/ 
(KXX) ^ 4. Hence an error of the order of 10% is made in 
neglecting the second term. If we do so, the resulting 
one-dimensional heat equation becomes 

/ d$\ 3 / (l-0£»TeiK 

\KxxT/^\nk0 / 
' \ OX' 2 \ Tei ' 

dx 

averaged over the circular cross section. 
A further simplification can be obtained under certain 

conditions. We have 

d j dd\ / d26\ J3KXX dd\2 

— < Kxx / = < Kxx / + ( ) 

dx\ dx! \ dx2/ \dT-dx' 

=A,^|1 +r«y^HY 
\ dx2[ L\dxJ I dx2J dT~ ) / 

When 0<xexp( — x/px)y the second term is of order 
6d liiKxx/dT~ which produces an error not in excess of 
10% when 0/T~«O.O4. This corresponds to a value of 
h/I< 0.0084. 

Under these conditions we can write 

(Kxx){d2d/dx2) - f <n>*<0><l - anrei)/(ret). 

If 0ocexp(—x/px), then px=^{Kxx)(rei)/{n)k(\ — anTe^ 
and (KZX) may be determined. 

file:///dT-dx'


d=22.7 mm 

FIG. 4. Photographs of oscilloscope traces showing a typical 
sequence of quenched light signals at various distances d from the 
heated region for a cylindrical plasma. The discharge parameters 
are: Neon gas at 7 mm Hg, 200 /tsec in the afterglow, II = 660 Oe, 
«=5.5X10u/cm3 . The time scale is 5 jusec/cm. 


